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I. INTRODUCTION

To properly describe coupled chemical
reactions and gaseous diffusion in porous '
sorbent and catalyst grains, the "pore tree" was ‘
introduced by Simons and Finson (1979) and JJ
Simons (1982). The pore tree represents an / Qw ‘"/
isolated sub-structure, allowing diffusion into 4 v
and out of the porous media without permitting \
transport through the media. This pore structure
was developed via analogy to the kinetic theory f

of gases with the pore length analogous to the
mean free path. Under the assumption that the Lt
pore aspect ratio (pore length to radius) is a
- constant, a pore size distribution was obtained Particle Surface
that has been confirmed for coal, coal char,
sorbents, catalysts and kidney stones from both
men and women. The pore tree was statistically .
derived from the pore size distribution and Figure 1. The Pore Tree
allows the orderly migration of a reactant gas
from the large pores to the small pores (Fig. 1).
A detailed description of the pore tree and the coupled transport and chemistry is given by
Simons (1982, 1983a). The spatially dependent transport/reaction equations are solved for a
single pore tree and then the total contribution of all trees (of all sizes) in the system is
obtained by summing the contribution of each tree that reaches the exterior of the system.
This is distinct from the "bulk" transport approach in which the transport equation for a single
pore is integrated over all pores at a fixed point in space before integrating spatially. The
"bulk” transport approach is invalid if the spatial gradients in the transport equations are
implicit functions of pore size. One example of this implicit pore size dependence is that of
the heterogeneous reactions within porous catalysts and sorbents for which the pore tree
structure/transport model was developed. A second example is that of coupled diffusion and
remediation reactions in the immobile region of soil.

= Appropriate
Mean Radius at x
X

In order to describe the subsurface transport of gas and water in soil, the dispersion of
contaminants, and in-situ remediation of contaminated sites, the pore tree is extended herein
to simulate permeability and bulk transport. The random nature of the pore structure, which
formed the basis of the statistical derivation of the pore tree, is applied to porous soil and
sand. The interconnectivity of the pore structure is obtained via a statistical determination of
the "branches" that are common to several trees to allow convection and diffusion through the
large scale (mobile) structure in addition to diffusion and coupled reactions in the small scale
(immobile) structure. The extended pore tree model has been used to explain the measurement
errors in the permeability of soil due to the measurement scale size (Shouse et. al., 1994) and
has successfully predicted the bulk gaseous diffusivity in partially saturated soil (Washington
et. al., 1994) as a function of a saturation scale size. The theory also depicts a permeable
sub-range in which small scale convection bridges the flow between the bulk convection and
the small scale diffusion. The model provides an analytic description of a pore structure for
soil upon which transport and coupled chemical reactions may be accurately superimposed.
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II. ISOLATED PORE TREE: THE STRUCTURE

Following the pore structure theory of Simons and Finson (1979) and Simons (1982),
consider a spherical porous particle of radius a, containing pores of length 1, and radius r,,.
The pore dimensions range from a microscale of the order of Angstroms to a macroscale
which is a significant fraction of the particle radius. The radius of the largest pore is denoted
by r,.. and is given by

Tax = 26 0'P[3K, (1)

where 0 is the total porosity of the particle and K, is a constant of integration,
approximately equal to five, which relates the pore length to its radius

- @)
- 3
lp =K,r,/ 0
The radius of the smallest pore is denoted by r,;, and is given by
T =20/Bp,s, A3)

where p, is the density of the solid matrix, s, is the specific internal surface area (several
hundred m?/g), and

B =In(ry/ ) )

The particle contains a continuous distribution of pore sizes from r;, to r.,,, . The
number of pores within an arbitrary plane of cross-sectional area A and with radius between

1, and 1, +dr, is denoted by g (rp)Adrp. The pore distribution function g_(rp)is given by

g(r,)=06/2npr, | )

where g (r,) indicates an average over all inclination angles between the axis of the pore and
the normal to the plane. Due to the random orientation of the pores, the intersection of a
circular cylinder with a plane is an ellipse of average area 27r,”. Hence, the porosity is the
2nr,” moment of g( r,) and the internal surface area is the 4nr, moment of g (r,). The

expression for g (rp) was derived (Simons and Finson,1979) from statistical arguments and
has been validated through extensive comparison of the predicted volume and surface area
distributions with mercury intrusion data (Stacy and Walker, 1972). This has been
accomplished for coal, char derived from that coal (Kothandaraman et.al., 1984), sorbents,
catalysts and even kidney stones from both men (low porosity oxalate) and women (high
porosity phosphate).




A characteristic feature of the 1/r,’ distribution depicts that the pore volume between
I and T, increases linearly with the natural log of r,. It is the functional form of this
relationship,

T

Pore Volume f r; g(r,)dr, <lnr, ©

Tmin

that depicts the inverse cubic dependence of g (rp) on 1,. A linear display of mercury
intrusion volume vs. In(r,) always infers a 1/r;* distribution.

The number of pores within the bulk volume V whose pore radius is between r, and
1,+dr, may be defined by Vf(r,)dr,. The pore volume is expressed as the nr,’l, moment of
f(rp) and the internal surface area is the 2nr,]l, moment of f(rp). The pore size distribution
functions ( f(rp) and g (rp) ) are clearly not independent. The deﬁnitions of porosity and
internal surface area infer that f(rp) is related to g (rp) by

E(r) =f(r)1,]2 )

Equation (7) simply states that the probable number of pores intersecting an arbitrary plane
increases with the length of the pore and with the density of pores.

The length of a pore is determined by an arbitrary intersection with another pore and
is expressed (Simons and Finson, 1979) as a collision integral over the pore distribution

functions. The analysis suggests that 1, , g (rp) and f(rp) are proportional to r, , 1/r,> and

1/r,* respectively. The constants of proportionality are obtained from integral constraints, i.e.,
the total porosity and internal surface area contained in the pore structure. The expression for

A f(rp) is given by

4/3
flry=—"— ®
TPk, 1,

where the constants were defined above.

The pore volume distribution corresponding to these distribution functions is similar to
that utilized in the random pore model (Gavalas, 1980 & 1981). However, the pore tree
model and the random pore model differ dramatically in their choice of the pore aspect ratio
(length to diameter) and its implications with respect to pore branching. The random pore
model allows a single pore to connect two larger pores. This picture lends itself to the
idealization of instantaneous mixing between the pores and requires that the pore aspect ratio
be of the order of one hundred. The pore tree theory uses data for r,,, to imply (via K,) that




all pores possess an aspect ratio of the order of ten. Hence, small pores may connect to larger
pores only on one end and all pores must branch from successively larger pores like a tree or
river system.

Each pore that reaches the exterior surface of the particle is depicted as the trunk of a
tree. The size distribution of tree trunks on the exterior surface of the particle is denoted by
§(rt)41ta2drt where §(r,) is functionally identical to §(rp). Each trunk of radius r, is
associated with a specific tree-like structure. Let N, be defined as the branch distribution
function where Ndr, is the number of pores of radius r, (within size range dr,) in a tree
whose trunk radius is 1, . The total number of pores of radius r, in a sphere of radius a
may be expressed as 4/3m a3 f( rp)drp or, as the sum of all pores of radius r, contained

within every tree in the porous sample, plus all pores of radius r, that are themselves the
trunk of a tree. Hence,

Ena3f(rp) = fN,g(r,)41ra2drt +4na’g(r,) ®

r

where g(r,) is the number of tree trunks per unit external area of the porous sample and only
those trees whose trunk radius is greater than r, may contain a pore of radius r,. Using the
previously derived expressions for r,,,, g(rp)and f(rp), Eq.(9) is identically satisfied by

N, = rf/r; (10)

The branch distribution function completely characterizes the pore tree. The internal
surface area and pore volume associated with each pore tree are denoted by S(r) and V (1,
respectively, and are expressed as the sum of the contributions from the trunk and that from
the branches.

T

S(r)=2nrl,+ [2xr,1N,dr, 1n
Timin

Vir)== r? l, +f1rr; I,N,dr, (12)
Trmin

Using Eq.(10) for N,, S(r) and V,(r) become




S.(r)=2nr,l (i) (1-6) (13)

rmin

V(r)=nrll (1 +In (i]] (14)

rmin

where the (1-8) term in S, has been included to account for pore combination (Simons, 1979).

The surface area associated with the pore tree may be several orders of magnitude
greater than the surface area of the trunk. However, the volume of the pore tree may, at
most, be one order of magnitude greater than that of the trunk. It should also be noted that
the above expressions for S, and V, reduce to those appropriate to a single cylindrical pore in
the limit of r, -1, (the leaf of the tree). Furthermore, the integrals of S,(r) and V.(r) over

all g(r,)recover the total internal surface area and pore volume of the porous sample.

Each trunk of radius r, is associated with a specific tree-like structure with continuous
branching to ever decreasing pore radii. The radius and number of pores is a unique function
of the distance x into the tree. The coordinate x is skewed in that it follows a tortuous path
through the branches of the tree. Let n(x) represent the number of pores of radius r, at
location x in a tree of trunk radius r,. An analysis (Simons,1982) of this pore tree has
demonstrated that

n(x) =r; [ri(x) (15)

and the coordinate x is related to r, by
dr,ldx =-r,[], (16)

The continuous branching model has been used to successfully describe char oxidation
(Lewis and Simons, 1979; Simons, 1982 & 1983a), coal pyrolysis (Simons, 1983b & 1984)
and the catalytic cracking of benzene by porous iron oxides (Simons et al., 1986). It was also
used to successfully describe sulfur sorption (SO, and H,S) by porous calcine (CaQ) in the
limit of zero utilization (Simons and Rawlins, 1980; Simons et al., 1984) and was later
extended to include CaSO, and CaS deposits (Simons and Garman, 1986; Simons et al., 1987;
Simons, 1988; Simons et al., 1988). The subsequent determination of the controlling physical
parameters led to a new concept for the optimization of the sulfur sorption process (Simons,
1991; Simons et al., 1992) through spray drying of water soluble organic calcium solutions to
control the sorbent pore structure.




1. INTERCONNECTIVITY

The first step in determining the size distribution of the interconnected pores and the

distribution of the permeability is to determine the distribution function é,(rt,rp) drp which

represents the number of pores of radius r, (within size range dr,) per unit cross section of an
arbitrary plane and also contained within a tree whose trunk radius is r. Consider an infinite
homogeneous isotropic porous media and isolate a spherical volume of that media denoted by
the radius a. Such a volume is illustrated in Fig. 2. The total number of pores of radius ,
(within size range dr,) intersecting plane AA of area ma® has previously been defined by

g (rp)n azdrp . The pores in plane AA in this size range may also be determined by

integrating é,(r,,rp)ut azdrp over all trees whose trunk intersects the exterior surface of the
porous sample. Hence it follows that

§("p)1ta2drp = f[é,(r,,rp)nazdrp] g(r,)4nadr, 17

»

where only those trees whose trunk radius is greater than r, may contain a pore of radius r,,.

A solution to Eq. (17) for ét(r,,rp) will not necessarily be unique. Physical arguments

will help determine (_?,(rt,rp) and help ensure that it is the particular solution we seek. Since
N, represents the number of pores of size r, in the tree and the probability of a pore

intersecting a plane is proportional to its length, it follows that (_;,(r,,rp) should be




proportional to the product of N, and 1 /1, , i.e., proportional to r,”/r,’. Eq. (17) is identically
satisfied by a function which differs from r’/r,> by In(r,).
.2
. ! (18)
2
4na’r, ln(rw/rp)

é:('}"p) =

Note that In(r /1,,,) introduces an integrable singularity at r,=T,,, such that C-}_,(rt,rp) drp is
finite at r,=r,,, . Hence, there is one and only one largest pore for each reference sphere.

The probability of trees sharing common branches, i.e., the interconnectivity of the

pore structure is described in Fig. 3. We seek the distribution function I (7,) drp which
represents the number of pores (within size range dr, about r,) per unit area of plane AA that
are connected to both sides of the pore structure through pores at least as large as r,. Ay is
defined as the area within plane AA that is open to one side of the porous media through all
trees of size r,’ (through all pores of size r,’ that are at least as large as r,). Subsequently,

Ay é,(r,,rp) drp represents the number of pores of size r, (within size range dr,) per unit area
of plane AA that are contained in a tree of size range dr, about r, and are also connected to

the opposite side of the porous media through all trees denoted by r,'. It follows that the
distribution function for interconnected pores in plane AA may be obtained by integrating

A, ét(rt,rp) drp over all trees (r) that are large enough to contain a pore of size r, . Hence,

rmsx

I_(Tp)ﬂazd"p = f[Ae é,(rt,rp) dr) g(r)2na’dr, (19

Figure 3. Interconnectivity of a Porous Media
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From the above definition of A, , Ay may be expressed as

Tmax Tt

Ay = f[ 27 T;‘Eazét(rt,rp) drp] §(",)21tazdrt (20)

h T

where the primes on the variables of integration have been omitted. Evaluating Eq. (20)
yields

na’o In(r,,. /7))
Ay= 75 p 21

from which Eq. (19) yields the common branch distribution function.

= 0In(ry,/r) - )

I(r) = —49—— 8(r,)

It has been deduced that the total number of common branches of size r, in an
arbitrary plane scales approximately with the total number of pores of that size in that plane.
Hence, there is a probability of interconnectivity at pore size r, that is logarithmic in pore
size. Defining this probability as Py(r,) via Eq. (22),

O 0/ 75) @3)

Py(r,) = m

it is apparent that approximately one percent of all pores of all sizes are interconnected
through larger pores.

The broad size range associated with the interconnectivity suggests that a very wide
range of pore sizes control transport and that a complicated mixture of convective and
diffusive transport persists through all of pore space. While permeability is dominated by the
largest pores, it is important to determine the level of convection that is occurring in smaller
pores in order to accurately describe the fine scale transport necessary to assess chemical
reactions. In the following sections, bulk permeability, bulk diffusivity and small scale
convection are addressed using the interconnectivity derived above.




IV. PERMEABILITY

The fundamental relationship governing convection in a porous media is Darcy's Law

which relates the volume flow rate Qp to the pore radius r, and the pressure gradient %

0,- T, (_ dP] 4)

where W is the viscosity of the fluid. The bulk permeability (k) is defined in
terms of the volume flow rate across the cross sectional area A

k- QB 25)
A (-dp/dx)

Convection across plane AA in Fig. 4 will possess contributions from two primary
sources illustrated in Figs. 4a and 4b. Fig. 4a illustrates the case where the convection in
plane AA is due solely to the pores that are interconnected in that plane. Fig. 4b illustrates
the case where the convection in plane AA is due to the smaller pores in the pore tree that
are interconnected outside of plane AA. This connectivity will translate into a slower velocity
in the pore crossing plane AA but could be significant because 99% of the pores in plane AA
are not interconnected in that plane.

a) Pores Interconnected in Plane AA b) Pores Interconnected Out of Plane AA

Fig. 4 Convection in the Pore Tree




Consider any pore of radius r; in plane AA of Fig. 4b to be the trunk of a tree. Each
pore of size r, within the tree possesses the probability PI(rp) of being interconnected and

each interconnected pore in the tree will carry volume flow rate Q'P(rp). Since there are
N.dr, (Eq. 10: N,=1.’/1,%) pores in size range dr, within the tree, the total volume flow rate

Q'm(rs) through trunk r, in plane AA becomes

Q.(r) = [ Q,(r)) Pir,) N, dr, (26)
or, to first order,
. _On r: In(r,,/r)( dp @7
Q.(ry) = Bup ( a) + HO.T

Within this approximation, it is seen that Q'm(rs) is identical to the volume flowing
through the pores that are interconnected within plane AA. i.e.,

Q.(ry) =Q,(r,) P(r,) (28)

which demonstrates that all volume flow through plane AA in pore size r, is dominated by the
interconnectivity of size r, in plane AA and not by the interconnectivity of smaller pores in
subsequent branches of the pore tree. Simply stated: case 4a dominates case 4b.

Since all volume flow through plane AA is limited by the interconnectivity of the

pores in that plane, Eq. (24) for the volume flow rate may be rewritten to include all
interconnected pores in area A. Hence,

O:M(_%J fr; i(rp)drp @)

where 1 (rp) is the "common branch distribution function” given by Eq. (22). The bulk
permeability (k) is then expressed as

.-
k=— | r, I(r,)dr, (30)
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Upon integration, Eq. (30) becomes

i - (efm]z 31)
16 B

Equation (31) resembles a dozen other expressions available in the literature wherein it
is concurred that the bulk permeability is dominated by the largest pores in the media but the
unknown value of that permeability is simply replaced by an unknown pore size to the second
power. Since the pore size distribution function will be least accurate at the extreme end of
the size range, i.e. at r,,, , no claim can possibly be made that the numerical constants in
Eq. (31) are in any way superior to those derived elsewhere. One important advantage of the
extended pore tree model is that it characterizes the distribution of permeability in pore space,
a feature that will be important in describing fine scale contarninant transport and in-situ
remediation. A second advantage is the ability to assess statistical errors in the measurement
of the permeability as a function of the measurement scale size. This exercise is also a good
test of the extended pore tree model.

Consider a soil sample with the following physical characteristics:

Conductivity: v =2 cm/hr
Permeability: k =0.6 Darcy
Porosity: 0 =50%
Pore Aspect Ratio: K,=5

IN(T e/ Toin) B =12

From Eq. (31), it follows that
Tpax = 300 pm

and subsequently r,;, = 20 A. The size of the smallest pore is not an important parameter for
this application but may be readily adjusted through a minor variation in the value of B (e.g.,
for r_;, of the order of 100 A, B = 10). The bold assertion made in applying this pore
structure model to soil is that the 1/r,’ pore size distribution is valid between 1, and r,,,.

To investigate the role of the measurement scale size on permeability, consider the
largest pore r,,, contained in the spherical sample of radius "a" as given by Eq. (1). Since
Imax i Eq. (31) for the permeability represents the largest pore in the media, the
corresponding value of "a" is denoted a,,, and represents the largest sample size for which
the pore sizes will scale with the dimensions of the sample. From Egs. (1) and (31)

~ 24K p
B = e

v (32)

Each sphere of radius a,,, will contain one pore of size r,,,. A 20 x 20 grid of these spheres

11




will be characterized by the dimension 40a_,, and contain 400 pores of size r,_. Each of
these pores possess probability Py(r,) of being interconnected. Following Eq. (23), Py(r,) is
approximately 0.0025 for r, sufficiently close to r,,,. Hence, only one of the 400 largest
pores in this 20 x 20 grid will be interconnected and the error in the measurement of the
permeability will correspond to the statistical error of 100% associated with that of a sample
number of unity. Carrying this argument to a 200 x 200 grid of dimension 400a_, , there will
be 100 interconnected pores corresponding to a statistical error of 10%. Similarly, a grid of
scale 4000a,,,, will reduce the error to 1%.

Figure 5 illustrates the predictéd permeability measurement error associated with the
soil sample characterized above (a,,, =0.3 cm). Note that the errors associated with the
measurement of permeability become negligible as the measurement scale size approaches
several meters. This has been confirmed by the infiltration data of Shouse et. al. (1994). The
measured value of hydraulic conductivity asymptotes to 2 cm/hr at measurement scales

- greater than 4 meters. At smaller measurement scales, the inferred measurement error is

calculated under the assumption that the asymptote is precisely 2 cm/hr. The excellent
agreement between the predicted and inferred error supports the extension of the pore tree
model to describe a porous permeable media.

I

I

® Data: Shouse et. al. (1994)

O Inferred Measurement Error
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Figure 5. Error in Permeability Associated with the Measurement Scale
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V. BULK GASEOUS DIFFUSION IN A PARTIALLY SATURATED MEDIA

The extended pore tree model is readily adapted to a partially saturated media through
the assumption that all of the water is contained in pore sizes between r;, and r,,, while only
gas is contained between r,,, and r,. Since, by Eq. (6), porosity is distributed as In(r,) in
pore space, the porosity associated with the air filled pores (6,) is approximated by

ea = E(’_m# 0 (33)

where 1, is treated as an independent variable of the saturated pore structure. No gaseous
diffusion is allowed within 1, < r,,. With this restriction, the extended pore tree model is used
to develop an explicit relationship between bulk gaseous diffusivity and the permeability
which is validated through the diffusivity data of Washington et. al., (1994). It is
demonstrated that the gas diffusivity scales as 1/r,, and it is the sensitivity of r,, to the
saturated volume that controls the saturated diffusivity.

The diffusive mass flux in a single pore is given by

. -0
M, (r,)=nD, rj ( afc) (34

where D, is the continuum gas diffusion coefficient (D,=0.2 cm?/s). Continuum gas phase
diffusion is valid only for pore radii sufficiently large that D, is greater than the Knudsen
diffusion coefficient, Dy, =2Vr,/3, where V is the mean thermal speed of a molecule.
Knudsen diffusion is characterized by gas collisions with the pore walls and is valid only for
1, < 3D,/2V = 0.1um. The limit of validity of Eq. (34) is denoted by Tex » the larger of
either r,,, or 3D,/2V. This limit restricts continuum gaseous diffusion from both the saturated
pores and the unsaturated pores controlled by free molecule flow.

Just as in the case of convection, it must be determined whether the mass flux across
plane AA in Fig. 4 is determined by the interconnectivity of the smaller pores out of the
plane (Fig. 4b) or by only those pores that are interconnected in the plane (Fig. 4a). Consider
any pore of radius r, in plane AA of Fig. 4b to be the trunk of a tree. Each pore of size r,

within the tree possesses the probability PI(rp) of being interconnected and each
interconnected pore in the tree will carry the mass flow rate Mp(rp) . Since there are N.dr,

(Eq. 10: N,=r,*/1,%) pores in size range dr, within the tree, the total mass flow rate M(r)
through each and every trunk of radius r, in plane AA becomes

M (r) = f M,(r,) P(r,) N, dr, (35)

Tsat
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Integration of Eq. (35) yields the mass flux (case 4b) for each trunk of radius r,

. D 6 -0
Mw(rs) = T 8 *a rS ( pc] (36)
4r ax

sat

where a In(r,,. /1., term was eliminated via Eq. (33).

If the mass flux through plane AA is limited by the pores that are interconnected in

that plane (case 4a), the mass flux is expressed as Mp(rs) P, (r)), and it is immediately seen
that

M (r)>Mr) P(r,) @37)

i.e., case 4b dominates case 4a. Since the mass diffusion in plane AA is determined by the
pore interconnectivity of the smaller pores outside of plane AA, the saturation of those
smaller pores becomes an important element in the bulk gaseous diftusion.

Since each pore of radius r, in plane AA carries mass flux Mw(rs) , the bulk diffusion
coefficient is obtained by integrating Eq. (36) over all pores in that plane

= 2D r
=f 7% wrydr, (38)
or, upon integration
D 66 r
D, = __L__‘.‘Tm_a_" (39)
8P 7

and upon eliminating r,.,; via Eq. (31), the bulk diffusivity D, is expressed in terms of the
permeability k.

2D,6,/%

rsat

bk = (40)

The bulk diffusivity cannot increase indefinitely with increasing permeability as
inferred by Eq. (40). In deriving this expression, the mass flux through the interconnected
branches of the tree was not constrained from exceeding the diffusive capabilities of the trunk
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itself. To correct this potential problem, the limit of D, is determined as the maximum
diffusive flux in pore r, integrated over all pores in plane AA.

r

ri - 0
Dlimi:=f “Dg"sz g(r)dr, = —-; (41)

Tmin

This limit is illustrated in Figure 6 together with the predicted values of D, for an
extended range of values of permeability and the saturation radius, r,,,. Model predictions
correspond to the measured values of 8,=0.2 and 6=0.5 from Washington et. al., (1994),
and the diffusivity data suggest a value of r,,, in the range of 10 um to 100 pm. An exact
comparison of the present theory to the least squared fit of the data suggests a value of
30 um. While the excellent agreement with the data of Washington et. al., (1994) does
- substantiate the present theory, there is clearly a very wide range of possible values for D,
in partially saturated soil which will depend upon an unknown saturation radius. A two order
of magnitude decrease in the saturation radius will increase the bulk diffusivity by two orders
of magnitude and yet the corresponding increase in the air filled porosity is, by Eq. (33), only
33%. Hence, field measurements of the unsaturated volume are not sufficiently accurate to
correlate bulk diffusivities. If bulk diffusivities are to be correlated with field data, such
measurements should attempt to measure the saturation radius.
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VI. PERMEABLE SUB-RANGE

The present theory offers the opportunity to investigate some of the features of the
pore structure that are relevant to the fine scale contaminant transport and remediation
reactions. One such feature is the distribution of permeability in pore space. While the bulk
permeability is dominated by the largest pores, some permeability occurs in smaller pores. It
is the balance of the sub-scale convection with the small scale diffusion that will control
contaminant transport and in-situ remediation.

The analysis and data comparison on the errors introduced by the measurement scale
size, section IV, has shown that soil with a bulk permeability of 0.6 Darcy possesses, on
average, one large interconnected pore in any 12 cm by 12 cm cross section. To allow the
penetration of the permeate throughout such a coarse grid, it will be shown that there is a
very extensive permeable sub-range in the pore structure which does not contribute
significantly to the bulk permeability but in which convection dominates diffusion.

To evaluate the permeable sub-range, Eq. (31) is rewritten to express the permeability
contained in pores of radius r, (r, < r,,) or smaller

2
v =] 8% 42)
- — P
16
where k,, represents the permeability in the sub-range dimension to be defined by L,(r,). It
was deduced above that L, (r,) must be selected such that there is at least one interconnected
pore of radius r, in cross-sectional area L, in order for k,, to be accurate to order unity.

Subsequently, a 20 x 20 grid of spheres of radius a,, will contain one interconnected pore of
radius r,

L. (r,) =40a, (43)
where a,, is given by Eq. (32) with k replaced with k..

24K, B
R (44)

Egs. (42) to (44) represent the scaling of the pore structure with scale size for all r, < r,,, or
foralla<a,, andall L (r,) £ L.(r,,) . The balance of convection and diffusion within
these scale sizes may be assessed.

The convective flux of species "c" with mass density p, across area L,> is denoted by
My = p,Q =k, Ly p (~dpldx)/ (45)
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and the diffusive mass flux across the same cross section is expressed as

My, =D(p /L)Ly (46)
where the characteristic gradient of p, is p./ L,, and the effective diffusion coefficient is D,g.

The balance between convection and diffusion occurs on the length scale L where the
convective and diffusive mass fluxes are equal. From Egs. (45) and (46)

D_.p*K> ”
=100 PP P 2o 47)

6% (-dp/dx)

The boundary between convective and diffusive transport is illustrated in Figure 7 for a solute
in a saturated porous media. The effective diffusion coefficient is assumed to be given by the
porosity times the solute self diffusion coefficient D, (D,~ 10° cm?/s). The boundary between
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sub-scale convection and diffusion is illustrated for the solute in water (i = 0.01 poise) at
pressure gradients of 0.01 atm/m, 0.1 atm/m (hydraulic) and 10 atm/m. Also illustrated is the
length scale associated with the spacing of the large pores controlling the bulk permeability
(Eqs. (43) and (44) in the limit of r, — r,,, ). The results depict a very extensive permeable
sub-range at bulk permeabilities characteristic of soil, sand and gravel. For soil with a bulk
permeability of 1 Darcy, the large interconnected pores are nominally 15 cm apart. The soil
matrix between the large pores experiences a convective mass flux through its smaller pores
whose mass flow rates are much smaller than that of the bulk permeability but greater than
that possible by diffusion. At length scales of order one centimeter, diffusion becomes rate
limiting. Hence, this pore structure model provides a methodology for determining the length
scale separating the mobile and immobile regions of the soil. The theory depicts that the size
of the immobile region is primarily a function of the pressure gradient.

When the above analysis is applied to gas phase diffusion in an unsaturated media,
W is of the order of 10 poise and D is 0.05 cm?/s (Figure 6). The boundary between
convection and diffusion occurs on length scales five times as large as those depicted in
Figure 7 for the same pressure gradients. While the size of the permeable sub-range is
severely reduced, the entire distribution of species "c" is still limited by a diffusive length
scale that is primarily a function of the gas pressure gradient. Hence, the length scale
separating the mobile and immobile regions of the soil is of the order of five centimeters at
gas pressure gradients equal to the hydraulic pressure gradient (0.1 atm/m) and of the order
of 10 cm at 0.01 atm/m.

Similarly, when the above analysis is applied to gas phase diffusion in a partially
saturated media, W is of order 10 poise and D, may be as low as 10° cm?/s (Figure 6).
Under these conditions, the boundary between convection and diffusion occurs at length scales
identical to those depicted in Figure 7 and the existence of a permeable sub-range is
preserved. However, for a partially saturated media, Dy, should be used for D . From Eq.
(40) we write

2D
D= 2D,6,k, (48)

*
rsat

from which it follows that the length scale separating the mobile and immobile regions of a
partially saturated soil has a slightly stronger pressure gradient dependence

(49)

KD 2
L=44( hP K, D0, ]

6% ry, (-dp/dx)
It is anticipated that the concept of the permeable sub-range will help researchers
develop relatively simple, physics based submodels for the ground water/remediation codes. If

these submodels were tested independently from the codes, the codes themselves would not
require parameter "fitting" and could become more directive than interactive.
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VII. SUMMARY

The pore tree model has been extended to describe the permeable pore structure which
characterizes the subsurface transport of gas and water in soil, the dispersion of contaminants,
and the in-situ remediation of contaminated sites. The random nature of the pore structure,
which formed the basis of the statistical derivation of the pore tree, is applied to porous soil
and sand. The interconnectivity of the pore structure is obtained via a statistical determination
of the "branches" that are common to several trees to allow convection and bulk diffusion
through the large scale (mobile) structure in addition to diffusion and coupled chemical
reactions within the smaller scale (immobile) structure. The statistical analysis reported above
has determined that the probability of pore interconnectivity extends across the entire pore
size range, with a slight increase in the probability accompanying a decreasing pore size.
While permeability is dominated by the largest pores, it is also important to establish the level
of convection and diffusion that is occurring at the intermediate scales in order to accurately
relate large scale bulk transport, small scale diffusion and coupled chemical reactions.

The permeability across a given plane is limited by the largest pores that are
interconnected in that plane. The statistical analysis has determined that approximately one
quarter of one percent of all large pores are interconnected. This establishes a very coarse
grid for the permeability which leads to measurement scale size errors. The extended pore
tree model has successfully explained the measurement errors in the permeability of soil due
to the measurement scale size (Shouse, et.al., 1994) which has indirectly confirmed the low
probability of the interconnectivity.

The bulk gaseous diffusivity across a given plane is shown to be limited by the
interconnectivity of the smaller branches outside of that plane. These small pores may be
saturated, resulting in a strong dependence of the diffusivity on the radius of the saturated
pore. A comparison of the present theory to the diffusivity data of Washington et. al., (1994)
suggests a saturation radius of 30 um. While the excellent agreement with the data does
substantiate the present theory, the diffusivity in partially saturated soil is very sensitive to an
unknown saturation radius. If bulk diffusivities are to be correlated with field data, such
measurements should attempt to measure the saturation radius.

The permeability and the bulk diffusivity have tested two extreme limits of the pore
structure and pore interconnectivity concepts. Permeability is limited by the in plane
interconnectivity (Fig.4a) and bulk gaseous diffusion is limited by the out of plane (Fig. 4b)
interconnectivity. Permeability is limited by the large pore interconnectivity and bulk diffusion
is limited by the interconnectivity of the smaller pores. The apparent success of these
concepts over a very broad pore size range suggests that the extended pore tree model will
accurately describe the relationship between large scale convection and small scale diffusive
transport.

Analysis of the permeability has utilized the interconnectivity of the pores to determine
the distribution of the permeability with pore size. This analysis suggests the existence of a
permeable sub-range in the pore structure which does not contribute significantly to the bulk
permeability but in which convection dominates diffusion. It is the balance of the sub-scale
convection with the small scale diffusion that will control contaminant transport and
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in-situ remediation. Preliminary estimates suggest that the length scale separating the mobile
and immobile regions of the soil is of the order of one cm. Smaller grains are, on a unit mass
or size basis, more reactive than the larger grains. Hence smaller grains will locally deplete
more nutrients or remediation chemicals from the convective flow than their larger
counterparts. Simultaneously, the smaller pores surrounding the smaller grains offer more
resistance to convection and a reduced amount of nutrients or remediation chemicals will be
available in the convective flow. The size distribution of the pores and grains, and the
variations in fluid velocity within and between pores of different sizes is critical to interfacing
these transport processes. Future plans include the development of a methodology to couple
convection and small scale diffusion upon which coupled chemical reactions may be added to
accurately describe contaminant transport and in-situ remediation.
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